Kalkulus_2

Please download to get full document.

View again

of 7
34 views
All materials on our website are shared by users. If you have any questions about copyright issues, please report us to resolve them. We are always happy to assist you.

Download

Document Related
Document Description
OK
Document Share
Document Transcript
  Sistem Koordinat Persegi Panjang Cartesian: Jarak (d) P ke Q : d(P,Q) = xyP(x 1 ,y 1 )R(x 2 ,y 1 )Q(x 2 ,y 2 )x 1 x 2 y 1 y 2 212212  )()(  y y x x  −+−  Lingkaran Pada Sistem koordinatRms !ingkaran : 22121222 r )y-(y )x-(x: y1)(x1,Pusat r  y x: (0,0)Pusat =+=+ xy(x,y)r   #aris   neg berbalikanslgkemiringan:lurustegak Saling samygkemiringanmemp.garis-garis jk :Sejajar  noB, 0! By x :garis pers.umumBtk garis.#gn y  potongttk  b  mx y:atau),x-m(xy-y:lurusgarisPers. x-xy-y :)lurus(garis(slope)$emiringan )2,2xx(% :ga& titik ten'umus 1112122121 ≠=++ =+===++= m y y  #ra$ik %ersamaanProsedr: 1& 'at tae! %asangan koordinat2& #amar titik %asangan koordinat& *ngkan titik+titik terset&Per%otongan gra$ik: dgn sm x  y= dgn sm y  x= Per%otongan antar gra$ik: se!esaikan keda %ersamaan seara serentak&
Search Related
We Need Your Support
Thank you for visiting our website and your interest in our free products and services. We are nonprofit website to share and download documents. To the running of this website, we need your help to support us.

Thanks to everyone for your continued support.

No, Thanks